© PXimport

Processors eindelijk weer sneller

Geplaatst: 25 juli 2020 - 12:39

Aangepast: 19 december 2023 - 08:38

Roel Stortelder

Vroeger was een nieuwe processor al verouderd voordat je de tijd had hem in je computer te installeren. Elk jaar kwam er een nieuw model uit dat soms wel twee keer zo snel was als zijn voorganger. Maar na de lancering van de Intel Haswell-processors in 2013 hield die snelle vooruitgang plotseling op. Wat was er aan de hand en waarom lijkt die ontwikkeling toch weer op gang te komen?

Om te begrijpen wat de vooruitgang van chips bepaalt, moeten we eerst terug naar de basis. Een processor, het brein van een computer, is opgebouwd uit miljoenen of zelfs miljarden kleine schakelaars die we transistors noemen. Deze transistors schakelen een signaal op slimme wijze om tussen een hoge en lage spanning (1 of 0), waardoor de processor in staat is om berekeningen uit te voeren. De snelheid van een processor wordt grotendeels bepaald door twee factoren: het aantal transistors en de snelheid waarmee ze kunnen schakelen. Meer transistors betekent immers dat een processor meer tegelijkertijd kan doen en een hogere schakelsnelheid, beter bekend als klokfrequentie, betekent dat een processor zijn taken sneller kan uitvoeren.

Opvallend genoeg is er één eigenschap van deze transistors die zowel het aantal als de snelheid bepaalt: het formaat. Een kleinere transistor betekent uiteraard dat er meer op een chip passen, maar daarnaast is een kleinere transistor ook makkelijker om te schakelen. Het resultaat is iets wat wij tegenwoordig Moore’s Law noemen. In de jaren zestig voorspelde Gordon Moore, destijds baas van Intel, dat het aantal transistors op een chip exponentieel zou groeien met ongeveer een factor twee per twee jaar. Een minder bekende, maar eigenlijk belangrijkere voorspelling kwam van zijn collega David House. Rekening houdend met de groeiende klokfrequentie verwachtte hij dat de prestaties van de chips elke achttien maanden zouden verdubbelen.

Einde aan de groei?

Beide voorspellingen bleken grotendeels te kloppen. Transistors werden elke generatie kleiner, de klokfrequentie ging omhoog en de processors werden in hoog tempo sneller. Tenminste, dat was zo tot de verschillende partijen rond 2013 tegen een muur aan liepen. De grens leek bereikt. Verschillende fabrikanten, zoals TSMC, Intel en Samsung, hadden buitengewoon veel moeite om een betrouwbare methode te vinden om transistors nog kleiner te maken. Terwijl optimalisaties van het fabricageproces ervoor zorgden dat de klokfrequentie toch langzaam toenam en het aantal transistors omhoog kon, lukte dit niet meer met het tempo van tien jaar eerder. In laboratoria werd veelvuldig onderzoek gedaan naar kleinere transistors en wetenschappers vonden manieren om nog kleiner te gaan, maar tot voor kort was er nog geen oplossing die betrouwbaar genoeg was om op grote schaal in te zetten.

 

© PXimport

Snelcursus processor maken

Klein, kleiner, kleinst

De belichting bepaalt grotendeels het formaat van de transistor. Deze maat begon in de jaren zeventig bij ongeveer 10 micrometer (1 µm = 0,001 mm). Dat is al ontzettend klein (een menselijk haar is ongeveer 80 µm dik), maar dat formaat werd snel nog kleiner. In het begin van de jaren negentig was een transistor al minder dan 1 µm groot en tegenwoordig zijn enkele nanometers al niet bijzonder meer (1 nm = 0,001 µm = 0,000001 mm). Om makkelijk onderscheid te kunnen maken tussen de verschillende generaties, worden de verschillende maten van de transistors gebruikt als naam. De huidige processors worden bijvoorbeeld gemaakt met een 7nm- of 10nm-technologie. Dit wordt ook wel een node genoemd.

De verkleining van de transistors ging tot enkele jaren geleden soepel. In 2012 moest de structuur van de transistor worden aangepast om grote lekstromen te voorkomen bij transistors kleiner dan 30nm. Dat leek in eerste instantie geen problemen op te leveren voor de verdere verkleining. De nieuwe zogenaamde FinFET-transistors vereisen een paar extra fabricage-stappen, maar dat was een kleine moeite voor de extra mogelijkheden die het opleverde. De overstap naar FinFET betekende echter wel dat de naamgeving niet langer overeenkomt met de formaat van de transistor. Om marketingredenen blijven de verschillende fabrikanten echter toch steeds kleinere maten gebruiken als naam voor hun nieuwe processors, ook als de maat van de transistor niet daadwerkelijk significant kleiner is geworden. Dat leidde er ook toe dat de verschillende nodes onderling niet langer te vergelijken zijn. Zo zijn de ‘14nm’-transistors van Intel kleiner dan de ‘14nm’-transistors van Samsung.

Eenmaal aangekomen bij 14 nm deed zich echter een probleem voor. Bij de belichting van het lichtgevoelige polymeer wordt uv-licht gebruikt, maar de transistors zijn zo klein geworden dat de golven van het licht groter zijn dan de aan te brengen structuren. Meerdere belichtingsstappen waren een tijdelijke oplossing om toch nog kleinere transistors te maken, maar rond 2014 was de rek er helemaal uit. In de jaren die volgden, werden de bestaande nodes verbeterd, maar echt kleiner werden de transistors niet. Intel voegde bij elke verbetering een plusje toe aan de naam van de node, waardoor er nu processors gemaakt worden met een 14 nm+++-technologie.

 

© PXimport

EUV van ASML

Er waren verschillende oplossingen, maar de ene bleek in de praktijk nog onbetrouwbaarder dan de ander. Alleen het Nederlandse bedrijf ASML boekte echte vooruitgang. In plaats van ultraviolet licht met een golflengte van 193 nm, probeerde ASML de grote stap te maken naar extreem ultraviolet (EUV) licht met een golflengte van slechts 13,5 nm. Daarmee zouden in één klap alle schalingsproblemen zijn opgelost, maar het genereren en sturen van licht met zo’n kleine golflengte bleek een grotere uitdaging dan verwacht. Aanvankelijk hadden de eerste EUV-machines al in 2016 op de markt moeten komen, maar ondanks positieve berichten liet de technologie nog enkele jaren op zich wachten.

De opwekking van het licht in deze machines gebeurt anders dan alle andere lampen die we voorheen kenden. Een microscopisch klein druppeltje gesmolten tin wordt door een zeer krachtige laser eerst vervormd tot een schijfje en vervolgens verhit tot plasma ontstaat. Dit plasma straalt het EUV-licht uit, dat wordt gebruikt voor het belichten van de wafers. De uitdagingen van EUV houden daar echter niet op, want EUV wordt door werkelijk alles geabsorbeerd, zelfs door lucht. Een groot deel van de machine moet daarom functioneren in een hoog vacuüm; ook weer een uitdaging. Allemaal redenen waardoor de machines van ASML uiteindelijk pas in 2019 gereed waren voor de grootschalige productie van chips.

 

© PXimport

AMD naar 7 nm

Vandaag de dag is TSMC, een chipproducent die onder meer de processors van AMD maakt, een grote afnemer van de EUV-machines van ASML. Zonder de beperkingen van de traditionele belichtingstechnieken is het voor het eerst in jaren weer mogelijk om de transistors te verkleinen. Het resultaat zien we direct bij de processors van AMD, want sinds vorig jaar maken die gebruik van TSMC’s 7nm-technologie. Na jaren ondergesneeuwd te zijn geweest door Intel, staat AMD nu opeens aan de top als het gaat om de prestaties van de processors. AMD kan meer kernen kwijt op één chip en is ook op het gebied van stroomverbruik aan het winnen. Alleen de klokfrequentie kan nog niet tippen aan de ver geoptimaliseerde 14nm-node van Intel.

Intel is nu druk bezig met 10 nm, maar verwacht dat deze minder productief wordt dan de vorige 14nm-node. Dat komt doordat Intels 10nm-technologie nog altijd van de ‘oude’ belichtingstechnologie gebruikt, waardoor de productie van elke chip erg veel tijd en dus geld kost. Het bedrijf hoopt daarom zo snel mogelijk de overstap naar 7 nm te kunnen maken, mogelijk in 2021. Dat betekent overigens niet dat het bedrijf dan nog steeds ruim een jaar achterloopt op AMD, want de 7nm-transistors van Intel worden duidelijk kleiner dan de 7nm-transistors in de huidige AMD-processors.

 

© PXimport

Toekomstmuziek

Kijken we nog verder in de toekomst, dan zien we dat ASML in 2029 verwacht machines te hebben die transistors maken met een 1,4nm-technologie. Als die naamgeving in de buurt zit van de daadwerkelijke afmetingen, dan betekent het dat het bedrijf over negen jaar in staat is om structuren te maken van slechts 12 (!) atomen breed. Dat zal vast veel nieuwe complicaties met zich meebrengen waar nu nog geen directe oplossingen voor zijn. Op een dergelijk kleine afstand kan één verkeerd geplaatste atoom al vernietigend zijn voor een transistor. Misschien dat wetenschappers tegen die tijd een oplossing vinden, maar tot die tijd leggen veel bedrijven voor de beschikbaarheid van veel processorkracht de focus op andere oplossingen, zoals cloud computing.

Dit concept wordt door wetenschappers al een lange tijd gebruikt in de vorm van supercomputers of centrale rekenservers op universiteiten, maar voor consumenten is het nog relatief nieuw. Een veld waar het snel in populariteit toeneemt, is gaming. Een game-pc kost immers veel geld, terwijl de werkelijke rekenkracht vaak slechts enkele uren per week wordt benut. Door de opkomst van snelle internetverbindingen merken de meeste gamers tegenwoordig voornamelijk een verschil in hun portemonnee: in plaats van 1500 euro uit te geven aan een computer die na drie jaar weer vernieuwd moet worden, heeft een gamer nu genoeg aan een abonnement van tientje per maand.

 

© PXimport

Cloud computing

 

© PXimport

Je hebt weer de keuze

Cloud computing is wellicht een mooie oplossing voor de toekomst. Maar nu kun je voor veel taken nog niet zonder krachtige processor. Tot een paar jaar geleden was de keuze voor een nieuwe processor vrij simpel te maken. Door de hogere klokfrequenties en betere efficiëntie was een Intel-processor de enige juiste optie en koos je het model op basis van je budget. Dat veranderde al enigszins toen AMD met de Ryzen-processors kwam. Maar door het gebruik van de 7nm-technologie van TSMC heeft AMD met de Zen 2-architectuur grote vooruitgang geboekt op het gebied van prestaties en efficiëntie en is het weer echt een concurrent voor Intel. In die Zen 2-architectuur werden de klokfrequentie en het aantal instructies per klok sterk verbeterd. Die twee eigenschappen zijn voor games en single-threaded applicaties van groot belang, waardoor de AMD-processors voor het eerst in een lange tijd voor vrijwel iedereen interessant zijn. Begin april kwam AMD met de Ryzen 4000-serie voor laptops, waar de kracht van de 7nm-technologie extra duidelijk was. De kleinere transistors zorgen voor een zeer krachtige en toch energiezuinige processor, waardoor een laptop langer kan blijven werken op de accu.

Is Intel nu dan helemaal afgeschreven? Nee, er zijn nog altijd categorieën waar de marktleider interessant is. Zo bieden de topmodellen voor consumenten, de Intel Core i9-9900K en i9-9900KS, nog net de beste prestaties in games vergeleken met de tegenhangers van AMD. Het verschil is echter zeer klein en het prijsverschil erg groot. Daar komt nog eens bij dat de AMD-processors op vrijwel elk ander vlak beter presteren. In het goedkopere segment moet AMD het ook net afleggen tegen Intel. Zo is de Intel Core i5-9400F een net iets betere keus dan de AMD Ryzen 5 3600. De verschillen zijn echter klein, waardoor de schommelende marktprijzen uiteindelijk bepalend zullen zijn.

 

© PXimport

Conclusie

Het lijkt er op dat we na jaren stilstand in processorland onder andere door verbeterde fabricagetechnologie eindelijk weer echte vooruitgang en concurrentie zien. AMD neemt op het moment duidelijk het voortouw. Maar heb je de tijd om nog even te wachten met het aanschaffen van een nieuwe processor, dan kan dat zeer verstandig zijn. De concurrentiestrijd tussen AMD en Intel is door de komst van Ryzen 3000 al losgebarsten, maar de verwachting is dat het nog harder zal gaan zodra Intel de eerste processors produceert met behulp van EUV. Wanneer die precies gaan komen, is op het moment nog niet duidelijk. Intels laatste tijdlijn laat zien dat we die lancering in de eerste helft van 2021 kunnen verwachten.

Deel dit artikel
Voeg toe aan favorieten